
Graham King

Solvitas perambulum

epoll: The API that powers the

modern internet
January 3, 2022 software epoll history

You used epoll to fetch this blog post. For almost anything you do on the Internet the

server will be running Linux and it will use epoll to receive and answer your request in

a timely and affordable manner.

Aside: All of the above work on many operating systems and support API’s other than

epoll, which is Linux specific. The Internet is mostly made of Linux, so epoll is the API

that matters.

The core problem of running a network service, the problem epoll fixes, is that your

network is very fast and your clients network is very slow. A server handling a request

typically looks like this:

read the user's request (e.g. a browser HTTP GET)

do what they asked (e.g. load some information from the database)

write a response (e.g. HTML that the browser will display)

During the “read” and “write” parts above the server is idle, waiting for data or

epoll is what makes Go such a great language for writing server software. Here is

epoll in Go’s netpoll.

epoll is what makes nginx the most popular web server in the world (this blog runs

nginx). Here is nginx’s use of epoll.

and it is often what we mean when we say ‘async’ in most programming

languages. For example, of Rust’s two main async frameworks, async-std uses

polling and tokio uses mio.

The problem

https://darkcoding.net/
https://darkcoding.net/software/epoll-the-api-that-powers-the-modern-internet/
https://darkcoding.net/tags/software
https://darkcoding.net/tags/epoll
https://darkcoding.net/tags/history
https://man7.org/linux/man-pages/man7/epoll.7.html
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Public_servers_on_the_Internet
https://w3techs.com/technologies/details/os-unix
https://github.com/golang/go/blob/f229e7031a6efb2f23241b5da000c3b3203081d6/src/runtime/netpoll_epoll.go#L101-L126
https://news.netcraft.com/archives/2021/12/22/december-2021-web-server-survey.html
https://github.com/nginx/nginx/blob/a64190933e06758d50eea926e6a55974645096fd/src/event/modules/ngx_epoll_module.c#L784-L800
https://github.com/smol-rs/polling/blob/master/src/epoll.rs#L156-L157
https://github.com/tokio-rs/mio/blob/dca2134ef355b3c0d00e8e338e44e7d9ed63edac/src/sys/unix/selector/epoll.rs#L68

acknowledgments of that data to move across the network.

Before epoll the standard way to overcome this was to run a pool of processes each

handling a different user request, typically with Apache mod_prefork. While one

process waits on the user to acknowledge a packet of data, a different process can use

the CPU. An emerging alternative was to use a thread pool which is lighter than a

process pool and could handle low-hundreds of concurrent users. Multi-threading was

risky as many libraries were not thread safe. Steven’s 2004 reference UNIX Network

Programming has a chapter discussing preforked vs prethreaded designs, because

those were your options back then.

Then along came everybody, and even hundreds of concurrent users turned out not to

be enough. An influential article, The C10K problem started this discussion in 1999. It

was not uncommon for web requests to timeout. People would mirror popular sites in

an effort to spread the traffic.

In 2000 Jonathan Lemon solved this problem for FreeBSD 4.3 by designing and

building kqueue/kevent, making BSD the early choice for high performance

networking.

Independently, in July 2001 Davide Libenzi solved the problem for Linux, with the first

draft of epoll, which evolved, was merged into Linux kernel 2.5.44 (a development

release) in October 2002 and became widely available in December 2003 with the

release of stable kernel 2.6.

Jim Blandy has a fantastic comparison of threads vs epoll-based async here.

epoll allows a single thread or process to register interest in a long list of network

sockets (it supports things other than network sockets such as pipes and terminals,

but you rarely have thousands of those). An epoll_wait call will then block until one of

those is ready for reading or writing. A single thread using epoll can handle tens of

Before epoll

The solution

How it works

https://httpd.apache.org/docs/2.4/mod/prefork.html
https://amzn.to/3FUlV4n
http://www.kegel.com/c10k.html
https://en.wikipedia.org/wiki/Mirror_site
https://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://www.xmailserver.org/linux-patches/nio-improve.html
https://lwn.net/Articles/16026/
https://lwn.net/Articles/13481/
https://github.com/jimblandy/context-switch

thousands of concurrent (and mostly idle) requests.

The downside of epoll is that it changes the architecture of your application. Instead of

a handling each connection with a straightforward {read request, handle, write

response}, you now have a main loop more akin to a game engine. The code becomes:

loop

 epoll_wait on all the connections

 for each of the ready connections:

 continue from where you left off

You might be part way through reading a request on one of the ready sockets, and

part way through writing a response on another socket. You have to remember your

state, do only as much I/O as the socket can take without blocking, and then

epoll_wait again. A large part of the popularity of Go, and of the ‘async/await’ model in

languages like C#, Javascript and Rust, is that they hide that event loop, allowing you

to write straight-line code as if you were still doing thread-per-connection.

Without epoll either the economics of today’s Internet would look quite different

(fewer requests per machine, so more machines, costing more money), or we’d be

running our servers on a BSD. And without BSD’s kqueue (which preceded epoll by

two years), we’d really be in trouble because the only alternatives were proprietary

(/dev/poll in Solaris 8 and I/O Completion Ports in Windows NT 3.5).

epoll has been improved since it’s initial release, particularly with EPOLLONESHOT and

EPOLLEXCLUSIVE flags, but the core API has stayed the same. epoll solved the C10K

problem on Linux, which powers the Internet, allowing us to build fast and cheap

Internet services.

Thanks Davide!

Conclusion

Unfortunately, signal-driven I/O is next to useless with a TCP socket

and

The only real-world use of signal-driven I/O with sockets that the authors were able

to find is the NTP server, which uses UDP.

Davide Libenzi kindly read this post before publication

← Rust is also C

January 17, 2022

Scripting Minecraft server with Python

December 11, 2021

→

© 2022 Graham King

Addendum: predecessors

Linux had poll and select before epoll. They were designed to handle a handful of

file descriptors and they scale O(n) on that count. epoll scales O(1). Kerrisk has

performance numbers showing poll and select becoming unusable beyond the

hundreds of file descriptors, while epoll remains fast into the tens of thousands.

Linux also had signal-driven I/O before epoll. To quote UNIX Network Programming:

https://darkcoding.net/software/rust-is-also-c/
https://darkcoding.net/software/scripting-minecraft-server-with-python/
https://amzn.to/3r3IVIf
https://amzn.to/3FUlV4n

